An IBM Document from September 2022 - Release 1.0

IBM Z DevOps Acceleration Program

Implementing a Release-
based Development Process
for Mainframe Applications

Dennis Behm
dennis.behm@de.ibm.com

Mathieu Dalbin

mathieu.dalbin@fr.ibm.com

Lauren Li
lauren.k.li@ibm.com

Abstract

This document provides guidance on implementing a release-based
delivery workflow using Git, IBM Dependency Based Build, and a
deployment solution



mailto:dennis.behm@de.ibm.com
mailto:mathieu.dalbin@fr.ibm.com
mailto:lauren.k.li@ibm.com

1
2

Table of contents

INTRODUCGTION ..o iciiiiiiieieiterteirenterererensasassassassassassassassassassassassassassassassassassassassassassassnssnssanse 3
OVERVIEW OF A SIMPLIFIED RELEASE-BASED DEVELOPMENT PROCESS........cccotviiruiirniinenieesiansinnnes 4
2.1 INTRODUCTION . ttttttueeseeeeetenueeseeerssesennaseeeressssnnsseeersssssnnsasesessssssnssssessssssssnnseseeessssssnnseseesssssnsnnsesessssssnnnssesessnnsen 4
2.2 MAINFRAME DEVELOPMENT SPECIFICITIES IN A GIT-FLOW APPROACH ...uuuueeeeerriutneeeseeeresnnnesesessssssnnnsesessssssnnnesessssennes 4
2.3 HIGH-LEVEL WORKFLOW OF THE RELEASE-BASED APPROACH ....cuuuiiitieeettteeeitiaeeetneeetsneeesstneeessneessnnesessnneesssneesesnneeeees 5
GUIDANCE FOR DESIGNING AND IMPLEMENTING A RELEASE-BASED DEVELOPMENT PIPELINE .....7
3.1 IMPLEMENT CHANGES ON THE FEATURE BRANCH ..1vuuuueeetrtttttiieeeeererstnnaeseseesssnnnsesessrsssnnnasesessssssnnnnsesessssssnnnnsesesssnnes 7
3.1.1 USEE BUIIL SETUD ...ttt e ettt e ettt e e et e e ettt e e e at e e e et e e e ase s e e abeaeaatseeeeasesesasteaaansseseessessaassaasssees 7
3.1.2 Pipeline build fOr FEAtUIe BIONCRES ...........cceeveeeeieeeieeseeeeeette st et e e te e s tta e e e st e st essteeteesssasasaaasssenssasssssssassseansses 8
3.1.3 Integrating features into the DevelopmMENT BIANCH ................ccccueieeiiieeeiiiieeiieeeeeeteesite e eete e e e stta e e st e e ssteaesseaeessaees 9
3.2 PIPELINE STEPS FOR THE DEVELOPMENT BRANGCH ... .cvuuuiettteeeerttneeetsneeersueerssnaeessnneeessnnsesssneessssnessssnnsessnneeessnneessnnnees 10
3.2.1 Development pipeline: BUild QNG TESL...........cccueeeeeeeeeeeeie et ettt e ettt e et a e ettt e e e teeeesaeaeataseeesseessssssasssssaanans 10
3.2.2 Development pipeline: Automated creation of the Release branch................cccceccvueeeeceveeivvieeiiieeeieeeeiieeesiveaeeans 11
3.3 PIPELINE STEPS FOR THE RELEASE BRANGCH. .. ..cevvuueeertieeeeuteeeerttneertsneeersuneesssnaesssnneessssnsessnnnessssnessssnnsesssneeessnneessnnnees 11
3.3.1 Release pipeline: BUIlt QN TEST.........c..ueeecuueeeeeeeeeee e et e ettt ettt e e et e et e e ettt e e e saeeesttsaesassaaeesseesaasesaassssaanans 12
3.3.2 Release Pipeline: PACKAGING. .........c.cowveeueerieeieeeie ettt ettt ettt ettt ettt et e st esats et e s e st e saseeseananeenneesanes 12
3.3.3 Release pipeline: DEPIOYMENT...............oeeeueeeeeeeeeeee e eee et e et e ettt e e et e et a e et e e e e sae e e ettsaeataeaesstsesasssaeasssaaanans 13
3.34 Release pipeline: Ready for finalizing the rEIEASE ...............c.eeeeeueeeeeieeeeee et eeeeeee e e s tte e e eae e e e iste e e sseaeasassaenans 13
3.3.5 Implementing changes in the RelEASE DIANCH ...............cocueeieerieesiiieieeeieeeese ettt 14
3.4 PIPELINE STEPS FOR THE FINAL RELEASE PACKAGE ...uuueeeeeretutieseeeeeeessnnieseeesssssnnnaesessssssssnaaesessssssssnneesesssssssnneseseessenns 14
3.4.1 Creating a release in G CENEIAl Gt SEIVEN ..........cooueecueerueesieeeieeeeeete ettt ettt s et s et siteesaee e esaneeanes 15
3.4.2 Deployment to the Production @NVIFONMENT...............cccueeeeiueeeeiiieeeeeeeeeiseeeeeieaeattseeeeiseeeesasaeessssaessssesssssasassssaanans 15
3.4.3  Automatically merge code into the Production/Main BrANCHA ..........ccueevveeeeeeveeeieeeireeceeeeeeeireeeeeeseeeeesesseeeseens 15
3.5 PIPELINE EXECUTION FOR THE PRODUCTION/MAIN 123 A A 15
1000 111 [ of I 0 1] 10 1 16
APPENDIX..ceuiteiiieiiiiiiireiruiiriinsissiuirsssresseesiessiassrassresssssssssssssrassrsssrsssssssasssasssasssassssssssssasssases 17
5.1 USE CURL TO TRIGGER ACTIONS IN THE CENTRAL GIT PROVIDER ...uuivvtuniertuneerrrneerenneeeesnneerssneeesssneesssnesesssneesssnneessnnnees 17

Implementing a Release-based Development Process for Mainframe Applications Page 2/17



1 Introduction

This document describes a blueprint implementation of a release-based development process for
mainframe applications. This setup leverages a standardized development toolset based on an enterprise-
wide Git provider and continuous integration/continuous deployment (CI/CD) toolchain.

The purpose of streamlining both the DevOps solutions and the delivery workflow is to simplify the
process for development teams to deliver quality product releases on time. This enables Agile
development practices that allow the teams to respond more effectively to changes in the market and
customer needs.

The first part of the document will cover a high-level overview of the release-based approach, and details
of the technical implementation will be discussed in the second part. It is important to note that the
branching model discussed in this document is intended to serve as a guide rather than a set of rules.
Because development teams and applications vary in size, complexity, and requirements, the approach
can be adjusted as needed depending on the application and team.

Implementing a Release-based Development Process for Mainframe Applications Page 3/17



2 Overview of a simplified release-based development process

2.1 Introduction

As Git turned into the de-facto version control system in today’s IT world, new terminologies such as
repositories, branches, and merges arose. By agreeing upon a central Git server to integrate and
consolidate changes, development teams were able to collaborate more efficiently and effectively.
Building upon the open-source vanilla Git implementation, popular Git providers including GitHub, GitLab,
and Bitbucket have implemented additional workflow features to facilitate a secure and stable
development process. These include features such as Pull Requests (sometimes referred to as Merge
Requests) to support coordination with Git in larger teams. The term Pull Request will be used throughout
this document to designate the operation of merging one branch into another.

In 2010, Vincent Driessen blogged about his experience in software development projects. His thought
process and experiences leveraging Git in large development projects led to the documentation of a Git
branching model called git-flow!, which became widely adopted throughout the development
community.

In many organizations, mainframe development teams typically follow a release-based process to deliver
incremental updates to a pre-defined production runtime. When adopting Git as a source control
management (SCM) solution for doing mainframe development, git-flow is a perfect foundation for
designing a safe development process.

2.2 Mainframe development specificities in a git-flow approach

In the traditional development lifecycle of mainframe applications, only modifications, either what has
changed or what is impacted by a change, are built, released, and deployed. The process avoids the time-
consuming, full build and deployment of the entire application.

This raises the requirement to have one configuration (branch) in the version control system representing
the current source code running in production. The main branch of the Git repository will typically
represent that reference. Representing the production state of the application with a branch can be
considered as a variation of the original git-flow concept.

1 https://nvie.com/posts/a-successful-git-branching-model/

Implementing a Release-based Development Process for Mainframe Applications Page 4/17


https://nvie.com/posts/a-successful-git-branching-model/

2.3 High-level workflow of the release-based approach

Release-based delivery approach G o

. o - . .‘} Packaging
Following a git flow branching model — developing R(1)

) - )
<production/main> <Release+2> <Release+3>
7S ST
H | .’ | .’ H
Release 1 { H | Release 2 ; Release 3 i
i { NTTEST i
Lo o | I = =D =8
i i i€ - Release-Test of R(2) - I — Release-Test of R(3) -
4 22 |H—v i v g : H “ "
<development> , 47 A= ! g i A g A i i PO
¥ <feature 1> | i i ¥ <featute 3> i ! <featute 5> i !
) i 1 i
4 i ¥ <feature 4> | Y <feature 6>
i H <feature 2>
. L/
& i
1Dz User Build facility
-- Development of R(2) — -- Development of R(3) -

Figure 1 - Git-flow supporting a Release-based delivery approach

The above diagram depicts a simple release-based delivery process. This methodology allows developers
to work on two or more concurrent releases, with the option to deliver hotfixes to the current production
runtime.

To support this workflow, a distinction must be made between long-living branches such as the
Development and the Production/Main branches, and short-living feature branches (also known as "topic
branches"). Developers implement their changes on short-living feature branches and integrate those via
Pull Requests into the long-living branches, which are configured to be protected branches. Release
branches are assumed to be protected as well.

At a high level, the development team works through the following tasks:

1. Developers accept new work items and plan them according to a loosely defined release schedule.
The release-based workflow provides some flexibility to developers, as it is not required to work
against a formal release schedule.

2. For each independent development task for the current release (release R(1) in this case), a
feature branch is created according to pre-defined naming conventions, allowing the assigned
developers to have a copy of the codebase on which they can work in isolation from other
concurrent development activities.

3. The developers typically fetch the feature branch from the central Git repository (often called
origin) into their local clone of the repository and start making the necessary modifications for
their development task. They use the Dependency Based Build (DBB) User Build facility of their
integrated development environment (IDE) to validate the changes before committing them and
pushing them back to their feature branch on the central Git repository.

4, Optionally, the CI/CD pipeline orchestrator runs a pipeline for the feature branch on the
central Git server each time the developers push their committed changes to it. This process will
start a consolidated build that can also include the build of impacted programs within the
application scope. Unit tests can be automated for this pipeline, as well.

Implementing a Release-based Development Process for Mainframe Applications Page 5/17



5. Once the developers feel their code changes are ready to be integrated back into the shared
Development branch, they create a Pull Request to integrate the changes from their feature
branch into the shared Development branch. The Pull Request process often provides the
capability to add peer review and approval steps before allowing the changes to be merged.

6. Once the Pull Request is merged into the Development branch, the next pipeline
execution for the Development branch will build all the changes since the last successful build on
the Development branch. This pipeline can include a step to deploy the built artifacts (load
modules, DBRMs, etc.) into a shared test environment, as highlighted by the green DEV-TEST icon
in the diagram. In this DEV-TEST environment, the development team can validate their combined
changes. This first test environment helps support a shift-left testing strategy by providing a
sandbox with the necessary setup and materials for developers to test their changes early.

7. When the development team agrees to progress further in the delivery process of R(1), they enter
the release phase of the workflow by creating a Release branch, which is based off the
Development branch. This can be an automated action or performed manually. The purpose of
the release phase is to validate the changes in the next test environment.

8. Along with the creation of the Release branch, the team creates a Pull Request from the Release
branch to the Production/Main branch. This creates a place for collaboration between team
members and a vehicle to track and propagate the changes with transparency.

9. The first execution of the pipeline for the Release branch will rebuild the contributed
changes for the release, with the optimized compile options. Compared to the previously
described pipeline on the Development branch, this pipeline includes an additional step to
package build outputs and create a release candidate package. The package includes all the
identified changes since the last release and is passed to the deployment solution. Related
metadata is also propagated to enable traceability across the version control system, pipeline
orchestration, and deployment solution.

10. The release package is promoted through the various test stages and can take a predefined route.
The process can be controlled either through the pipeline orchestrator itself, or the development
team can leverage the interfaces of the deployment solution.

11. At this point in time, the development team can already start working on the following release
R(2), based on the Development branch. This approach allows work on two (or more) active
deliveries at the same time.

12. In the event of a defect being found in the new code of the candidate package for release R(1),
the developer will create a feature branch from the Release branch and fix the issue. It is expected
that the new package with the fix is required to pass all the quality gates and to be tested again.

13. When the release is ready to be shipped, the development team proceeds with the
finalization of the release. They must ensure that during the development process of release R(1),
no code changes (such as hotfixes) were delivered into the Production/Main branch, or if
delivered, the development team must ensure that the code changes have been integrated into
the Release branch (and Development branch), as well. All quality gates should have passed
successfully and approvals issued by the appropriate reviewers. When the deployment solution
installs the release package into the production environment, the content of the Release branch
is merged into the Production/Main branch and the associated Pull Request is closed accordingly.
All other long-living branches, such as the Development branch and any other active Release
branches, should be subsequently updated with the changes of the delivered release.

Implementing a Release-based Development Process for Mainframe Applications Page 6/17



3 Guidance for designing and implementing a release-based
development pipeline

In this section, the technical implementation of the release-based methodology will be detailed, focusing
on the major steps of the workflow.

3.1 Implement changes on the Feature branch

When the developers start working on a new task, they will first create a

. . <development>
feature branch based on the Development branch to start working in ¥ <foature 1>
isolation. If the feature branch was created on the central Git repository, the ’
developers can use a terminal or another Git interface on their local

-

v

e

P C—

workstation to clone or fetch the new feature branch from the central Git
repository down to their local working tree in which the changes will be
implemented. IDz User Build facility
Figure 2 - Feature branching
Integrated development environments (IDEs) supported by IBM allow workflow

developers to perform a DBB User Build to quickly gather feedback on the
implemented changes. This feature is expected to be used before the changes are committed and pushed
to the central Git server, where a pipeline can process changes automatically.

3.1.1 User Build setup

User Build is a feature provided by IBM-supported IDEs that compiles and link-edits modified source code
located in the local, checked-out Git working tree on the developer's workstation. This capability is
available in the following IBM IDEs:

e IBM Developer for z/0S?
e VS Code with the IBM Z Open Editor extension?
e |IBM Wazi for Dev Spaces*

The developer configures the User Build process to point to the central build framework implementation,
such as zAppBuild®, provided by the Mainframe DevOps Team. The build option --userBuild is passed to
the build framework.

Because the operation is performed with the credentials of the currently logged-in user, it is
recommended for each developer to reuse the high-level qualifier of their personal datasets. It is the
developer’s responsibility to regularly clean up the mainframe datasets and sandbox directories on USS
that are used for User Build. Automated cleanup of the files can be established based on a defined naming
convention for datasets or with a specific storage management policy.

2 |BM Developer for z/0S - https://www.ibm.com/docs/en/developer-for-zos

3 1BM Z Open Editor - https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.2 ?topic=ide-option-
2-developing-vs-code

4 |BM Wazi for Dev Spaces - https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.2?topic=ide-
option-1-developing-codeready-workspaces

5 https://github.com/IBM/dbb-zappbuild

Implementing a Release-based Development Process for Mainframe Applications Page 7/17


https://www.ibm.com/docs/en/developer-for-zos
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.2?topic=ide-option-2-developing-vs-code
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.2?topic=ide-option-2-developing-vs-code
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.2?topic=ide-option-1-developing-codeready-workspaces
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.2?topic=ide-option-1-developing-codeready-workspaces
https://github.com/IBM/dbb-zappbuild

User Build is a convenient way to compile and link-edit source code without committing the changes into
the Git version control system. Therefore, build outputs of User Builds are not assumed to be installed
into a runtime environment. To be able to perform simple and rudimentary tests on User Build-generated
outputs, the developer should modify the test JCLs to point to the personal libraries used in User Builds.

Alternatively, the setup of a pre-concatenated runtime library can be implemented to perform more tests
in the context of a (shared) test runtime environment. A dedicated pre-concatenated library in the
runtime system (for example, batch, IMS and CICS) into which the developers can write allows a
separation of the modules produced by User Builds, and enables regular cleanup of these intermediate
versions that are not yet registered in the central Git provider.

External dependencies to other components, such as include files (for example, copybooks or object
decks) which are not managed within the application repository, but are required for building the
application, can either be pulled in via a dataset concatenation® or by the usage of Git submodules,
depending on the repository organization.

Developers can commit and push their changes to their feature branch on the central Git provider at any
time.

3.1.2 Pipeline build for Feature branches

Using feature branches is a common practice to isolate development activities and focus on a particular
feature, fix, or enhancement. Feature branches relate back to the change request (or issue) from the
planning phase and their name should be based on a meaningful convention that reflects this. Typically,
one or several developers operate on the feature branch to contribute with the necessary changes on the
code base.

Optionally, a feature branch pipeline can be configured by the DevOps team to build the codebase of the
application and perform code reviews. The purpose of this pipeline is also to expand the scope of the build
and include changed and impacted programs to the list of artifacts to be produced. It operates on the
source code of the feature branch stored in the central Git provider.

Build and test Analysis

@ Build and Test = @ Code Review o

@ Wazi Analyze o

Figure 3 - Pipeline steps for the feature branch

The pipeline leverages the dependency metadata managed by IBM Dependency Based Build (DBB) via
DBB collections, which are consumed by the build framework, zAppBuild. At the first execution of the
build process for the feature branches, zAppBuild will duplicate this metadata by cloning the related
collections for efficiency purposes. This cloning phase ensures the accuracy of the dependency
information for this pipeline build. To be able to clone the collection, zAppBuild needs to understand
which collection contains the most accurate information and must be duplicated. As collection names are
derived from the name of the branch, it is easy to identify which collection should be cloned.

5 zAppBuild Configuration - https://github.com/IBM/dbb-zappbuild/blob/main/samples/application-
conf/Cobol.properties#L91-L97

Implementing a Release-based Development Process for Mainframe Applications Page 8/17


https://github.com/IBM/dbb-zappbuild/blob/main/samples/application-conf/Cobol.properties#L91-L97
https://github.com/IBM/dbb-zappbuild/blob/main/samples/application-conf/Cobol.properties#L91-L97

In the zAppBuild configuration, the originating collection is defined via the mainBuildBranch property.’
Depending on the source branch a given feature branch was created from, the mainBuildBranch property
may be dynamically passed to the build framework.

The pipeline for the feature branch performs the build step, which typically uses a unique high-level
qualifier that can be derived from the feature branch name. However, it is not required to package the
generated artifacts and deploy them, unless you want to install them in target environments for testing
purposes. Similar to the User Build scenario, the deployment phase can leverage the pre-concatenation
approach, as discussed earlier.

A house-keeping strategy should be implemented when the feature branch is no longer needed and
therefore removed from the central Git provider. This includes the clean-up of the DBB collections as well
as the build workspace. Specific scripts can be integrated into the pipeline to delete collections and build
groups®, or unnecessary build datasets®. When leveraging GitLab CI/CD as the pipeline orchestrator, the
use of GitLab environments helps to automate these steps when a branch is deleted. An implementation
sample is provided via the published technical document Integrating IBM z/0S Platform in CICD Pipelines
with Gitlab®™. Generally, webhooks and other extensions of the pipeline orchestrator can be leveraged to
perform these clean-up activities when a branch is being deleted.

3.1.3 Integrating features into the Development branch

When developers are finished with the implementation of their changes in their feature branch, the next
step is to integrate their contribution into the shared codebase for the given stage of the development
cycle. This process is usually performed with the help of the Pull Request mechanism of the central Git
provider.

In the simplified model of the release-based approach, creating a Pull Request is a convenient way to
declare the changes to be delivered with this iteration. However, if developers need to hold their changes
off until a later iteration, they still have the capability to create a Pull Request without going through the
process of merging their branch into the shared Development branch.

The Development branch is assumed to be a protected branch, meaning that no developer can directly
push changes to this configuration. It requires and forces developers to go through the Pull Request
process. Before merging the feature branch into the shared Development branch, some evidence should
be gathered to ensure quality and respect of the coding standards in the enterprise. Peer-reviewed code,
a clean pipeline execution, and approvals are examples of such evidence, allowing the development team
to confidently merge the feature branch into the Development branch.

A common practice is to squash the different commits created on the feature branch into a single new
commit, which keeps the Git history from becoming cluttered with intermediate work for the feature. This
also helps to maintain a clean history on the Development branch. You can read more about squash
merges on the documentation sites of the different Git providers.

71BM DBB zAppBuild Sample Build Framework Implementation — Impact Builds for topic branches
https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md#perform-impact-build-for-topic-branches

8 1BM DBB Community Repository - https://github.com/IBM/dbb/tree/main/Utilities/WebAppCleanUp

91BM DBB Community Repository - https://github.com/IBM/dbb/tree/main/Utilities/DeletePDS

101BM Whitepaper - https://www.ibm.com/support/pages/integrating-ibm-zos-platform-cicd-pipelines-gitlab

Implementing a Release-based Development Process for Mainframe Applications Page 9/17


https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md#perform-impact-build-for-topic-branches
https://github.com/IBM/dbb/tree/main/Utilities/WebAppCleanUp
https://github.com/IBM/dbb/tree/main/Utilities/DeletePDS
https://www.ibm.com/support/pages/integrating-ibm-zos-platform-cicd-pipelines-gitlab

3.2 Pipeline steps for the Development branch

After the feature branch is merged into the Development branch,

a new pipeline is kicked off to build the integrated changes in the . w7,
context of the Development branch configuration, as shown in <development> , 47 a7
Figure 5 ( @ ). Figure 4 - Automated pipelines after merging

feature into the shared codebase
Additional steps such as automated code reviews or updates of
application discovery repositories can be included in this pipeline process. When the development team
moves from the development phase into the release phase, they start by creating a Release branch from
the current state of the Development branch (Figure 5, @ ).

Preparation Import Build and test Analysis Prepare release

@ Preparation o @ zAppBuild-Update H Build and Test [ @ ADDI Refresh o a Prepare Release >

@ Code Review o

Figure 5 - Pipeline steps for the Development branch

3.2.1 Development pipeline: Build and Test

The purpose of the Build step of the pipeline for the Development branch is to ensure that multiple
merged features can be built and then tested together. It might happen that some features have indirect
dependencies on other features planned for the same release. This early point of integration along with
the impact build capability of the build framework!' ensures consistency and transparency of the
upcoming release.

Decoupling the build step from the deploy step in the pipeline is important to ensure that only outputs
from successful builds are installed into the test environment, rather than directing the build framework
to update the libraries of the test environment directly.

In this phase of the development lifecycle, the build typically operates with the compile options to enable
testing and debugging of the programs. As most organizations restrict the deployment to the production
environments with optimized code only, these build artifacts can be seen as temporary and only for initial
testing and debugging purposes.

To deploy the generated artifacts to the shared development test system (represented by the DEV-TEST
icon in Figure 4), a post-build script in a subsequent step is leveraged to process the build report
documenting the generated build outputs. It is typically the role of the deployment solution to create a
package and deploy it into different environments (this step will be discussed in detail in the description
of the pipeline for the release). However, given the temporary nature of the build outputs created for the
Development branch, a valid strategy would be to implement an ad-hoc method to install those temporary
deliverables to a DEV-TEST environment and circumvent the formal packaging and deployment process.
The major drawback of this approach is a lack of traceability and understanding of what runs on the DEV-
TEST environment.

To implement this simplified process, a post-build script can be used to copy the output artifacts from the
build libraries directly to the associated target runtime libraries.

11 See zAppBuild --impactBuild - https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md#perform-impact-
build

Implementing a Release-based Development Process for Mainframe Applications Page 10/17


https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md#perform-impact-build
https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md#perform-impact-build

3.2.2 Development pipeline: Automated creation of the Release branch

When the development team has completed their tests on the DEV-TEST environment and agreed to enter
the release phase, the development team creates a new Release branch from the current state of the
Development branch. This Release branch would now include all the contributing changes for this release.

The creation of the Release branch can be easily automated to ensure consistent naming conventions
across projects. This creation step is typically the last action of the pipeline for the Development branch,
and is generally a manually-triggered step for more control. This also allows the development team to
specify and pass a name for the release in accordance with their organization’s standard conventions. One
option is to allow the team to specify the type of release: major, minor or patch, rather than passing in
the name. By automating this step, standards are correctly and consistently applied: based on the release
type the development team has chosen, the pipeline step automatically computes the name of the
Release branch following a semantic versioning model*?. For instance, releases can follow a naming
convention like rel-x.x.x, where x.x.x represents the semantic versioning of the release. Using the rel prefix
also helps to easily identify releases in the pipeline processing when adding steps into the workflow. Of
course, different naming conventions can be applied.

To automate the creation of the new Release branch, the DevOps engineer can leverage the REST APIs
offered by the different Git providers. REST APIs can be reached with the curl/ utility, which is available on
most platforms, including z/0S Unix Systems Services (USS).

For reference, GitHub documents its REST interface to create a new reference®®, while GitLab’s
documentation to create new branches can be found under the Branches documentation®*.

After the Release branch is created, a Pull Request is created to document the changes for this release,
which are now flowing towards production. The creation of the Pull Requests can be automated with both
GitHub®® and GitLab®®. The Pull Request process provides the capability to add peer reviews and approvals
before allowing the changes to be merged.

3.3 Pipeline steps for the Release branch
<Release+1> { '
W

Release 1

Figure 6 - Building and
packaging a release candidate

The pipeline for the Release branch includes additional steps and differs
from the previously discussed pipelines.

<

4_-_

The goal of this pipeline, outlined in Figure 7, is to build a release candidate
with all the contributed changes @ , and to create the release package
of the generated build outputs @ , which is then deployed through all -~
the quality gates towards production ( @ @ ).

12 Semantic Versioning - https://en.wikipedia.org/wiki/Software versioning#Semantic versioning

13 GitHub REST API - Create Branch - https://docs.github.com/en/rest/git/refsticreate-a-reference

14 GitLab REST API - Create Branch - https://docs.gitlab.com/ee/api/branches.html#create-repository-branch
15 GitLab REST API - Pull Requests - https://docs.github.com/en/rest/pulls/pulls

16 GitLab REST API - Merge Requests - https://docs.gitlab.com/ee/api/merge requests.html

Implementing a Release-based Development Process for Mainframe Applications Page 11/17


https://en.wikipedia.org/wiki/Software_versioning#Semantic_versioning
https://docs.github.com/en/rest/git/refs#create-a-reference
https://docs.gitlab.com/ee/api/branches.html#create-repository-branch
https://docs.github.com/en/rest/pulls/pulls
https://docs.gitlab.com/ee/api/merge_requests.html

Figure 7 outlines the steps of a GitLab pipeline for the Release branch:

Build and test Analysis Packaging Deploy Release

CE@ Build and Test G) @ Code Review o Q@ Packaging G) @ Acceptance P) @ Release D)
@ Create Release Candidate 8

Figure 7 - Implemented release pipeline for the Release branch

3.3.1 Release pipeline: Build and Test

The Build and Test stage of the pipeline for the Release branch needs to build all the incorporated changes
of all merged features with the Optimize options. To identify the list of changes contributing to the release,
the build step of the pipeline leverages the --baselineRef option of zZAppBuild for incremental builds, which
is used to specify a baseline hash when calculating the list of changes. The option --baselineRef is a sub-
parameter of the --impactBuild option in zAppBuild, and sets the base Git hash upon which the git diff
command calculates changes for the repository?’.

Although it can be done manually, it is recommended to let the pipeline calculate the baseline reference
for impact builds in the Release branch. Instead of dealing with Git hashes to set the baseline reference,
the model leverages Git tags to identify specific points in the Git history. When a new Release branch is
created, a Git tag is also automatically created to easily refer to the state of the repository. When
calculating the baseline reference, the pipeline can search for the Git tag of the previous release candidate
in the history of Git tags and define this tag as the baseline reference.

In this model, tagging is automated by leveraging the respective APIs for the Git provider (for example,
GitLab'® or GitHub'®).

3.3.2 Release pipeline: Packaging

The Packaging step runs after the Build and Test step and creates a package of the generated build outputs
(for example, load modules, DBRMs, and JCLs). This incremental, yet cumulative package includes the
build outputs obtained from all the contributed changes (including the files impacted by the changes) for
this release. It represents a release candidate, which can be deployed into the various test environments
along the existing staging hierarchy.

The Packaging step not only creates the binaries package, but it also carries information about the source
code, such as the Git commit and additional links (including references to the Pull Request and the pipeline
execution), which are helpful for understanding the context of the creation of the package.

17 zAppBuild implementation to set baselineRef -
https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md#perform-impact-build-by-providing-baseline-
reference-for-the-analysis-of-changed-files

18 GitLab REST API — Create Git tag - https://docs.gitlab.com/ee/api/tags.htmlitcreate-a-new-tag

1% GitHub REST API — Create Git tag - https://docs.github.com/en/rest/git/refsticreate-a-reference

Implementing a Release-based Development Process for Mainframe Applications Page 12/17


https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md#perform-impact-build-by-providing-baseline-reference-for-the-analysis-of-changed-files
https://github.com/IBM/dbb-zappbuild/blob/main/BUILD.md#perform-impact-build-by-providing-baseline-reference-for-the-analysis-of-changed-files
https://docs.gitlab.com/ee/api/tags.html#create-a-new-tag
https://docs.github.com/en/rest/git/refs#create-a-reference

The Dependency Based Build community repository?® contains two sample scripts that implement this
Packaging step. If IBM UrbanCode Deploy is used as the deployment solution, the
CreateUCDComponentVersion script?! can be leveraged to create a UCD component version. Alternatively,
if a scripted deployment is being set up, the PackageBuildOutputs script?? can be used instead to store
artifacts in an enterprise binary artifact repository.

Both sample scripts leverage data from the DBB Build Report to extract and retain the additional
metadata, allowing traceability between the build and deployment activities.

3.3.3 Release pipeline: Deployment

The deployment process of a release package can either be triggered from the CI/CD pipeline or driven
through the user interface of the deployment solution. The implementation can vary, based on the
capabilities offered by the CI/CD orchestrator and the deployment solution.

IBM UrbanCode Deploy (UCD) provides a rich web-based interface, powerful REST APIs, and command-
line interfaces. Typically, the pipeline execution requests the deployment of the application package into
the defined test environments automatically, after successful completion of the preceding building and
packaging steps. These requests are performed through the REST APIs provided by UCD. However, if the
application team prefers to set up manual triggers for the deployments to the specific environments, this
can be performed through the Web interface of UCD. In that case, the pipeline is primarily used for
continuous integration and packaging.

The DBB Community repository provides a sample DeployUCDComponentVersion script?® to request a UCD
application deployment leveraging UCD’s REST APlIs.

In a GitLab CI/CD implementation, a pipeline can stay on hold and wait

for user input. This allows the pipeline to automatically trigger the R
deployment of the application package into the first configured
environment and lets the application team decide when to deploy to the (¥ Acceptance >
next environment through a manual step (for instance, deployment to the
@ Integration o

Acceptance environment).

. . s Figure 8 - Manually triggered
With Jenkins as the CI/CD orchestrator, it is not common to keep a jobs to deploy release candidate

pipeline in progress over a long time. In this case, the pipeline engineering  to Acceptance environment
team might consider the approach of requesting the deployments through

the user interface of the deployment solution. Alternatively, a deployment pipeline in Jenkins can be
designed and set up to combine the deployment with any automated tests or other automation tasks.

3.3.4 Release pipeline: Ready for finalizing the release

Once the application and test teams complete the entire testing process and have validated and approved
all changes for the release, the application package is ready to be released into production. The next step
is to create the tag in Git to identify the release. This creation can be manually performed, or it can be
automated through the pipeline execution.

20 hitps://github.com/IBM/dbb

21 Create UCD component version - https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion
22 package Build outputs - https://github.com/IBM/dbb/tree/main/Pipeline/PackageBuildOutputs

23 Request Application Deployment Sample Script -
https://github.com/IBM/dbb/tree/main/Pipeline/DeployUCDComponentVersion

Implementing a Release-based Development Process for Mainframe Applications Page 13/17


https://github.com/IBM/dbb
https://github.com/IBM/dbb/tree/main/Pipeline/CreateUCDComponentVersion
https://github.com/IBM/dbb/tree/main/Pipeline/PackageBuildOutputs
https://github.com/IBM/dbb/tree/main/Pipeline/DeployUCDComponentVersion

For the automated approach in GitLab, a REST request is submitted through a pipeline step to create the
Git tag for the current state of the Release branch?*. (A similar API is available for GitHub?>.) A naming
convention can be used to help identify the final state of the release, for instance rel-x.x.x-FINAL .

The pipeline orchestration is set up to run another pipeline when the Git tag is created. This helps to
finalize the deployment of the release to the production environment.

3.3.5 Implementing changes in the Release branch

During the release phase, additional changes to the codebase might be required, such as corrections for
a fix. To implement those changes, developers will typically create a feature branch from the Release
branch. When the change is implemented, a Pull Request is used to integrate these changes into the
Release branch. A strategy must be defined to handle those corrections for the release. Several options
can be considered:

e Option A: The package containing corrections is kept separate, but needs to be handled together with
the initial release candidate package. This leads to additional coordination efforts.

e Option B: A new cumulative binary package containing the baseline build outputs and the output of
the corrections is formed and passed to the artifact repository. The documentation of the packaging
scripts, CreateUCDComponentVersion and PackageBuildOutputs, which can implement this strategy
by accepting multiple build reports, provides more information.

e Option C: Rather than using an incremental build of the contributed changes for the correction,
perform a cumulative impact build that leverages the --impactBuild and --baselineRef options
together to build and package the next release candidate. This strategy might be the most expensive
one, as it will produce a new set of binaries that might need to pass all test and quality gates.

3.4 Pipeline steps for the Final Release package

The pipeline for the Final Release package consists of three steps. The first step #
defines a release in the central Git server, which adds additional information on

A
top of the Final Release Git tag. The next step requests the deployment of the final PROD i

package to the production runtime, and the last step automates the merging of i

the changes into the Production/Main branch, through the Pull Request. Figure 9 - Process to

. L deploy to production
These steps can either be managed through the pipeline orchestrator or be

performed via the deployment solution. In both cases, the sequence of steps remains similar. The design
decision might be impacted by the roles and the organization responsible for these actions in the
development and release lifecycle.

Create release Deploy Finalize

@ Create Release = @ Production = @ Finalize Release =

Figure 10 - Pipeline steps for the Final Release package

24 GitLab REST API — Create Tag - https://docs.gitlab.com/ee/api/tags.html
25 GitHub REST API — Create Tag - https://docs.github.com/en/rest/git/tags

Implementing a Release-based Development Process for Mainframe Applications Page 14/17


https://docs.gitlab.com/ee/api/tags.html
https://docs.github.com/en/rest/git/tags

3.4.1 Creating arelease in a central Git server

Most Git providers allow for the creation of a release to provide a summary of the changes, as well as
additional documentation. GitLab?® and GitHub?” offer a REST API to create a release. These requests can
either be driven from the pipeline orchestrator or the deployment manager.

As an example, zZAppBuild also declares releases to identify stable versions: https://github.com/IBM/dbb-
zappbuild/releases/tag/2.5.0

3.4.2 Deployment to the Production environment

The next step triggers the deployment to the production environment. For IBM UrbanCode Deploy, the
previously mentioned DeployUCDComponentVersion script can be reused.

In this phase of the lifecycle, the process can potentially integrate additional approvals. For instance, the
Operations team can be asked to approve the deployment request and potentially validate the Pull
Request on the central Git server.

3.4.3 Automatically merge code into the Production/Main branch

Before merging the code into the Production/Main branch, it is the responsibility of the development
team to ensure that changes can be seamlessly integrated: during the development process of the release,
emergency fixes may have appeared, and their corresponding changes should be merged into the relevant
branches first, including the Release branch.

In the last step of the pipeline for the Release package, the changes of the release are integrated into the
Production/Main branch on the central Git server. The changes should be merged from the Release
branch into the Production/Main branch through a Pull Request. Again, GitLab?® and GitHub?® provide
similar APIs to automate the merge of the Pull Request programmatically.

In this merge operation, it is not recommended to squash the commits, as each commit allows the
traceability back to the explicit request contributing to the changes. At this point in the workflow, to
ensure that the Development branch and all other long-living branches such as active Release branches
remain updated with the latest content and Git history from the Production/Main branch, Pull Requests
can be created from the Production/Main branch into the Development branch and any other active
Release branches.

3.5 Pipeline execution for the Production/Main branch

After the Pull Request is merged into the Production/Main branch, a pipeline for this branch is executed
to refresh DBB's dependency metadata for the Production/Main collection. This is achieved by running a
build with the --impactBuild --scanAll options. The purpose of this scan is to keep DBB's dependency
information for this branch up to date for any potential emergency fixes that would need to be
implemented from the Production/Main configuration.

26 GitLab REST API — Create Release https://docs.gitlab.com/ee/api/releases/
27 GitHub REST API — Create Release https://docs.github.com/en/rest/releases/releases
28 GitLab REST APl — Merge a Merge Request https://docs.gitlab.com/ee/api/merge requests.html#merge-a-merge-

request
2% GitHub REST APl — Merge a Pull Request https://docs.github.com/en/rest/pulls/pulls#merge-a-pull-request

Implementing a Release-based Development Process for Mainframe Applications Page 15/17


https://github.com/IBM/dbb-zappbuild/releases/tag/2.5.0
https://github.com/IBM/dbb-zappbuild/releases/tag/2.5.0
https://docs.gitlab.com/ee/api/releases/
https://docs.github.com/en/rest/releases/releases
https://docs.gitlab.com/ee/api/merge_requests.html#merge-a-merge-request
https://docs.gitlab.com/ee/api/merge_requests.html#merge-a-merge-request
https://docs.github.com/en/rest/pulls/pulls#merge-a-pull-request

4 Conclusion

This document provides guidance for implementing a release-based development process for mainframe
applications. The CI/CD pipeline configurations that were outlined at various steps of the release
development cycle can be adjusted depending on the application team's existing and desired
development processes and philosophy. Factors that might impact the design of the pipelines and
workflow include test strategies, the number of test environments, and potential testing limitations.

When architecting a CI/CD pipeline, assessment of current and future requirements in the software
delivery lifecycle is key. As CI/CD technologies continue to evolve and automated testing using provisioned
test environments becomes more common in mainframe application development teams, the release-
based branching strategy can also evolve to maximize the benefits from these advances.

Implementing a Release-based Development Process for Mainframe Applications Page 16/17



5 Appendix

5.1 Use curl to trigger actions in the central Git provider

As previously highlighted, some steps of the pipeline can be automated through the REST APIs or
command-line interface provided by the Git provider. Depending on the Git server and pipeline
orchestrator, different approaches exist to manage the credentials to perform these actions.

The GitLab platform uses tokens to identify users and provides the capability to define bots, which help
automate some steps of the CI/CD pipeline®. Bots can possess their own tokens, which can be provided
when REST APl requests are performed. Authentication tokens are passed through the header of the REST
API request.

The following snippets are examples of automated steps in the GitLab CI/CD pipeline orchestrator:

e Calculation of the release number depending on the argument passed in for the releaseType
parameter:

# evaluate the provided release type

if [ "SreleaseType" == "patch" |; then export releaseName=rel-"git tag --sort=-committerdate | head -n 1 |
sed 's/A[rel-]*//q' | sed 's/-[a-zA-Z0-9]*//q’ | awk -F. -v OFS=. '{S3 += 1 ; print}"; fi;

if [ "SreleaseType" == "minor" J; then export releaseName=rel-"git tag --sort=-committerdate | head -n 1
| sed 's/A[rel-]*//q' | sed 's/-[a-zA-Z0-9]*//q' | awk -F. -v OFS=. '{S2 += 1 ; $3 = 0; print}"; fi;

if [ "SreleaseType" == "major" ]; then export releaseName=rel-"git tag --sort=-committerdate | head -n 1
| sed 's/A[rel-]*//q' | sed 's/-[a-zA-Z0-9]*//q' | awk -F. -v OFS=. '{S1 +=1; $2 = 0; $3 = 0; print}"; fi;

e Sending a REST Request to the GitLab server to create a new branch:

curl --request POST --header "PRIVATE-TOKEN: S{AutomationToken}"
"S{Cl_API_V4_URL}/projects/S{Cl_PROJECT_ID}/repository/branches?ref=S{C|_COMMIT_REF_NAME}&br
anch=S{releaseName}"

o Sending a REST Request to the GitLab server to create the Merge Request:

curl --request POST --header "PRIVATE-TOKEN: S{AutomationToken}"
"S{CI_API_V4_URL}/projects/S{CI_PROJECT_ID}/merge_requests?source_branch=5S{releaseName}&targe
t_branch=production&title=Merge%20Request%20for%20Release%20S{releaseName}%20deployment&r
emove_source_branch=true&squash=false"

Note: The above snippets are simplified fragments and do not include the evaluation of return codes from
the REST request.

30 GitLab Token Overview - https://docs.gitlab.com/ee/security/token overview.html

Implementing a Release-based Development Process for Mainframe Applications Page 17/17


https://docs.gitlab.com/ee/security/token_overview.html

